Reactions of Cobalt Porphyrin Nitrite with Oxophilic Substrates. Formation of Sulfenic Acid by Oxygen Atom Transfer from Nitrite to Thiol.

Garik Martirosyan

Scientific and Technological Centre of Organic and Pharmaceutical Chemistry NAS, Yerevan, ggmartirosyan@gmail.com

The endogenous reduction of nitrite (NO_2^-) to nitric oxide (NO) is drawing increasing attention as a protective mechanism against hypoxic injury in mammalian physiology and as an alternative source of NO, which is involved in in physiological regulation of blood flow, cell signalling and vasodilation [1]. The chemical mechanisms for this transformation, which are mediated by metallo proteins and model compounds are of considerable interest. While thiol mediated reduction of nitrite at heme-model iron porphyrins has received significant attention [2], comparatively little is known about analogous reactions at other biologically relevant metal centers. Recently we have reported that reaction of $Co(TTP)(NO_2)$ with H_2S /ethanethiol results in formation of cobalt nitrosyl - Co(TTP)(NO) along with the formation of disulfide and H_2O via proposed proton-assisted O-atom transfer mechanism (OAT) [3]. As an intermediate formation of sulfenic acid EtS(=O)H was proposed.

Here we present the reactions of the model porphyrin nitrite Co(TTP)(NO₂) (TTP = mesotetratolylporphyrinato dianion) in sublimated solid films with oxophilic substrates such as phosphine, sulfide and different thiols at various temperatures from 77 K to room temperature using in situ IR spectroscopy with the use ¹⁵N and ¹⁸O labelled and natural abundance NO₂. Reactions of nitro cobalt porphyrins with phosphine and sulfide does not show oxidation of substrate. Mass spectrometric analysis Co(TTP)(N¹⁸O₂) reactions products with thiols revealed respective disulfides and H₂¹⁸O, suggesting that ¹⁸O originated from coordinated nitrite. Similar experiments conducted in solution, in presence of sulfenic acid trap- dimedone and monitored by UV-Vis supports reduction Co(TTP)(NO₂) to Co(TTP)(NO). Analysis of reaction products by ESI-QTOF mass spectrometry clearly show formation of dimedone thioethers, confirming earlier suggested O-atom transfer mechanism via formation of sulfenic acid intermediate. DFT calculations of reaction coordinate diagram of OAT from Co(TTP)(NO₂) to EtSH were also performed. A scan of the approach of the thiol to the O atom with greater electronic density led to the optimization of a transition state.

Acknowledgements: The financial support from SCS of the Republic of Armenia (Project 21AG-1D040) is gratefully acknowledged.

References.

[1] Bueno, M.; Wang, J.; Mora, A.; Gladwin, M. Nitrite signaling in pulmonary hypertension: mechanisms of bioactivation, signaling, and therapeutics. *Antioxid. Redox Signaling*, **2013**, 18, 1797-1809.

[2] Heinecke, J.; Ford, P. C. *J. Am. Chem. Soc.*, Formation of cysteine sulfenic acid by oxygen atom transfer from nitrite. **2010**, 132, 9240–9243.

[3] Martirosyan, G.; Hovhannisyan, A.; Harutyunyan, L.; Aleksanyan, A.; Iretskii, A.; Ford, P. Nitrite Reduction with H₂S/Thiol Mediated by Cobalt and Manganese Porphyrins in the Solid State. *Inorg. Chem.*, **2025**, 64, 741–750.